Übungen zu Kreisen und Kreisabschnitten

1. Gegeben sind Kreise mit den jeweils angegebenen Größen. Berechne die gesuchte Größe.

Fläche eines Kreises:

$$A = \pi \cdot r^2$$

Umfang eines Kreises:

$$u = \pi \cdot d$$

- Geg.: Radius r = 10 cm
- Ges.: Fläche A
- Geg.: Fläche A = 50 cm²
- c) Ges.: Radius r

a)

e)

a)

e)

g)

i)

- Geg.: Umfang u = 20 cm
- Ges.: Fläche A

- **b)** Geg.: Radius r = 10 cm
 - Ges.: Umfang u
- d) Geg.: Umfang u = 50 cm
 - Ges.: Radius r
- Geg.: Fläche A = 20 cm²
 - Ges.: Umfang u
- 2. Gegeben sind Kreisabschnitte mit den angegebenen Größen. Berechne die gesuchte Größe.

b)

d)

h)

j)

Ges.:

Fläche eines Kreisabschnitts:

$$A=\pi\cdot r^2\cdot\frac{\alpha}{360^\circ}$$

Länge eines Kreisbogens:

$$u = \pi \cdot d \cdot \frac{\alpha}{360^\circ}$$

- Geg.: Radius r = 12 cm
 - Winkel $\alpha = 70^{\circ}$
- Ges.: Fläche A_{α}
- Geg.: Winkel $\alpha = 70^{\circ}$
- Fläche $A_{\alpha} = 30 \text{ cm}^2$
 - Ges.: Radius r
 - Geg.: Radius r = 10 cm
 - Fläche A_{α} = 40 cm²
 - Ges.: Winkel α
 - Geg.: Winkel $\alpha = 70^{\circ}$
 - Länge d. Bogens b_{α} = 18 cm
 - Ges.: Fläche A
 - Geg.: Radius r = 5 cm
 - Länge d. Bogens $b_a = 30$ cm
 - Ges.: Fläche A

- Geg.: Radius r = 12 cm
 - Winkel α = 70°
- _
- Geg.: Winkel $\alpha = 70^{\circ}$
 - Länge d. Bogens b_a = 30 cm

Länge des Bogens b_a

- Ges.: Radius r
- Geg.: Radius r = 10 cm
- Länge d. Bogens $b_{\alpha} = 40 \text{ cm}$
 - Ges.: Winkel α
 - Geg.: Winkel $\alpha = 70^{\circ}$
 - Fläche A_{α} = 18 cm²
 - Ges.: Länge des Bogens b_a
 - Geg.: Radius r = 5 cm
 - Fläche $A_a = 30 \text{ cm}^2$
 - Ges.: Länge des Bogens b
- Gegeben ist ein Kreisabschnitt mit dem Radius ${\bf r}$ und der Bogenlänge ${\bf b}_{\alpha}$.
- a) Zeige, dass man die Fläche A_{α} mit folgender Formel berechnen kann: $A_{\alpha} = \frac{1}{2} \cdot b_{\alpha} \cdot r$.
 - (Interessant daran ist, dass weder die Zahl π , noch der Winkel α benötigt werden!)
- **b)** Rechne die Aufgaben 2 i) und 2 j) noch einmal mit der neuen Formel aus Aufgabe 3 a).